In mathematics, a rational number is a type of real numbers, which is in the form of p/q where q is not equal to zero. Any fraction with non-zero denominators is a rational number. Some of the examples of rational number are 1/2, 1/5, 3/4, and so on. The number “0” is also a rational number, as we can represent it in many forms such as 0/1, 0/2, 0/3, etc. But, 1/0, 2/0, 3/0, etc. are not rational, since they give us infinite values.
How to identify rational numbers?
To identify if a number is rational or not, check the below conditions.
- It is represented in the form of p/q, where q≠0.
- The ratio p/q can be further simplified and represented in decimal form.
The set of rational numerals:
- Include positive, negative numbers, and zero
- Can be expressed as a fraction
Examples of Rational Numbers:
p
|
q |
p/q |
Rational
|
10
|
2 |
10/2 =5 |
Rational
|
1
|
1000 |
1/1000 = 0.001 |
Rational
|
50
|
10 |
50/10 = 5 |
Rational
|